Computational nanomedicine

RESEARCH-2.jpg

Emerging semiconducting metal oxide nanostructures (nanospheres, nanotubes, thin films) with photocatalytic or magnetic properties are currently opening totally new horizons in nanomedicine (e.g. novel photodynamic therapies, a new class of contrast agents, magnetically guided drug delivery). We investigate shape and size dependent properties, we screen potentially efficient linkers for anchoring surfaces and binding biomolecules.

We tether various kinds of biomolecules (from oligopeptides and oligonucleotides to small drugs) to the activated surface according to the desired functionality. The assembled bioinorganic systems may also be labeled with fluorescent markers and contrast agents.