Molecular dynamics simulations of cRGD-conjugated PEGylated TiO2 nanoparticles for targeted photodynamic therapy

by P. Siani, G. Frigerio, E. Donadoni and C. Di Valentin
Journal of Colloid and Interface Science 2022, 627, pp 126 View at Publisher
DOI: 10.1016/j.jcis.2022.07.045

 TOC_JCIS_2022

The conjugation of high-affinity cRGD-containing peptides is a promising approach in nanomedicine to efficiently reduce off-targeting effects and enhance the cellular uptake by integrin-overexpressing tumor cells.  Herein we utilize atomistic molecular dynamics simulations to evaluate key structural-functional parameters of these targeting ligands for an effective binding activity towards αVβintegrins. An increasing number of cRGD ligands is conjugated to PEG chains grafted to highly curved TiOnanoparticles to unveil the impact of cRGD density on the ligand’s presentation, stability, and conformation in an explicit aqueous environment. We find that a low density leads to an optimal spatial presentation of cRGD ligands out of the “stealth” PEGylated layer around the nanosystem, favoring a straight upward orientation and spaced distribution of the targeting ligands in the bulk-water phase. On the contrary, high densities favor over-clustering of cRGD ligands, driven by a concerted mechanism of enhanced ligand-ligand interactions and reduced water accessibility over the ligand’s molecular surface. These findings strongly suggest that the ligand density modulation is a key factor in the design of cRGD-targeting nanodevices to maximize their binding efficiency into over-expressed αVβintegrin receptors.